Atlas of Missouri
Amphibians and Reptiles
for 2021

Richard E. Daniel and Brian S. Edmond
Table of Contents

- Introduction ... 3
- Nomenclature and Taxonomy .. 3
- Amphibians and Reptiles of Possible Occurrence 4
- Erroneously Reported and Non-Native Species 5
- County Records ... 5
- Distributions ... 5
- Terrestrial Ecoregions ... 6
- Aquatic Subregions .. 7
- Natural Divisions and Sections Map 8
- Level I Terrestrial Ecoregions Map 9
- Level II Terrestrial Ecoregions Map 10
- Level III Terrestrial Ecoregions Map 11
- Level IV Terrestrial Ecoregions Map 12
- Rivers and Major Streams Map .. 13
- Watershed Boundaries Map .. 14
- Ecological Drainage Units Map .. 15
- County and Surrounding States Map 16
- Species Locality Maps ... 17
- County Records Maps .. 47
- Acknowledgements ... 77
- Literature Cited ... 77
- Appendix A: Sources ... 83
Introduction

In 1997, with the initiation of the Missouri Herpetological Atlas Project (MOHAP), a database was established to serve as the basis for verifying new distribution records and tracking changes in individual species distributions within the state (Edmond and Daniel 2022). Qualification for inclusion in the database generally requires a catalogued voucher specimen housed in an institutional collection. However, in order to be valuable in tracking changes in the distribution of individual species, it is important to document historical records. Many of the specimens collected prior to 1960, most notably those reported by Hurter (1911) and Anderson (1965), were documented by specimens that have since been lost or destroyed. In order to provide the most accurate picture of the distribution of the state's herpetofauna we have included literature records that we believe to be valid.

Some records were not included because the identification could not be determined with certainty. Within Missouri, the *Hyla versicolor* complex consists of two broadly sympatric and morphologically indistinguishable species (*H. chrysoscelis* and *H. versicolor*). Specimens collected prior to the separation of the two species or those for which the species identification was not determined by some non-morphological trait were not included.

Currently, the MOHAP database contains 38,079 entries and 33,941 valid, non-duplicated collections. This represents specimens housed in 37 museum collections and cited from 33 historical literature sources; 5,318 documented county records; 10,453 unique localities; and 17,768 unique species / locality combinations. This new total constitutes 271 new database entries since the 2019 edition of the *Atlas* (Daniel and Edmond 2020). The total number of species contained in the current edition of the atlas is 118, comprised of 116 native species and 2 non-native species.

Nomenclature and Taxonomy

Scientific and common names used in this publication follow Crother et al. (2017). The chosen common name represents the most restrictive name available and refers to the subspecies found within the state of Missouri. If two or more subspecies are recognized in the state, the species common name was used. Refer to Appendix B for a complete list of scientific names and common names. Since the publication of Johnson (2000), several systematic studies have necessitated nomenclatural changes of some Missouri species.

Frost et al. (2006) concluded that several geographically widespread genera represented polyphyletic groups. Their work necessitated the splitting of several familiar genera and applying new names to the species found in Missouri. Missouri toads formerly placed in the genus *Bufo* have been reassigned to the genus *Anaxyrus* and true frogs of the genus *Rana* are now placed in the genus *Lithobates*.

Two other formerly cosmopolitan genera, *Eumeces* and *Elaphe*, have also undergone revision. Brandley et al. (2005) resurrected the genus *Plestiodon* for the clade containing the North American skinks and Unger et al. (2002) placed the North American ratsnakes of the genus *Elaphe* into the resurrected genus *Pantherophis*.

A study of the phylogeny of the racers restricted the genus *Coluber* to the New World and also included the coachwhip and whipsnakes of the genus *Masticophis* (Nagy et al. 2004). Reeder et al. (2002) concluded from their phylogenetic study that the genus *Cnemidophorus* was not a monophyletic assemblage. They presented evidence that species in North America represent a distinct clade and reassigned all U.S. species to the resurrected genus *Aspidoscelis*.

Several studies at the species level have also required changes in the nomenclature of some Missouri reptiles and amphibians. Leaché and Reeder (2002) restricted *Sceloporus undulatus* to the Eastern United States. Missouri populations formerly considered *S. u. hyacinthinus* are now placed in *S. consobrinus*. Starkey et al. (2003) determined that southern painted turtles represented a distinct genetic lineage and elevated *Chrysemys dorsalis* to a full species.

Using mitochondrial DNA in a range-wide examination of the *Lampropeltis getula* complex, Pyron and Burbrink (2009) recovered five lineages that they recognized as distinct species. The central lineage, found west of the Mississippi River, was assigned the name of the subspecies widely known in Missouri (speckled kingsnake) and is now known as *L. holbrooki*. More recently, we discovered two black kingsnakes (*L. nigra*) in southeast Missouri (Edmond and Daniel 2014). Because of dramatic shifts in the Mississippi River channel during the Pleistocene, a significant portion of southeast Missouri (i.e., Crowley’s Ridge and east) was previously found on the...
eastern side of the river. Anderson considered at least some specimens in southeast Missouri as hybrids with the speckled kingsnake (Anderson 1965). Thus, the kingsnakes found in that part of the state are likely black kingsnakes or hybrids with *L. holbrooki*.

Gamble *et al.* (2007) provided molecular evidence that cricket frogs roughly north and west of the Ohio / Mississippi River valleys, including all of Missouri, should be considered a distinct species, *Acris blanchardi*. The common name Blanchard's Cricket Frog is adopted for this species.

Lemmon *et al.* (2007) examined the distributions of North American trilling chorus frogs based on genetics and determined that Missouri populations formerly assigned to the western chorus frog, *Pseudacris triseriata*, were actually the boreal chorus frog, *P. maculata*, and confirmed that the upland chorus frog, *P. feriarum*, of the Mississippi Lowlands was a valid species. In addition, a new species of chorus frog, *P. fouquetii*, has been identified from the interior highlands and western coastal plain (Lemmon *et al.*. 2008). Currently, this species is known from three localities in Missouri. Nearby Ozark Plateau localities have been tentatively assigned to *P. feriarum* but are likely to be reassigned to this new species pending further investigation.

Bonett and Chippindale (2004) examined the relationship among members of the *Eurycea multiplicata* complex. They corroborated the conclusion of Thornhill (1990) that Missouri populations assigned to *E. m. griseogaster* were conspecific with *E. tynerensis*. Further, they found that the genus *Typhlotriton* did not show sufficient differentiation from sister taxon *E. tynerensis* to justify recognition and recommended synonymizing it with *Eurycea*.

Crother *et al.* (2011) examined foxsnakes throughout their range and determined that the previously recognized species is composed of eastern and western haplotypes, historically separated by a combination of the Mississippi River and past glaciation events. While it is obvious that foxsnakes in northwest Missouri can be assigned to the western form, the situation in the eastern part of the state is less clear. At least one specimen from southeast Iowa, near the Missouri border, was assigned to the eastern form. Despite their assertion that the Mississippi River formed a barrier, the authors also included the Saint Louis region in their range map for the eastern species, although no investigation.

A number of primarily eastern species have distributions that reach the Mississippi River along a portion of the Missouri border. These include: Southern Two-lined Salamander (*Eurycea cirrigera*), Three-lined Salamander (*Eurycea guttolineata*), Northern Zigzag Salamander (*Plethodon dorsalis*), Northern Slimy Salamander (*Plethodon glutinosus*), Eastern Cricket Frog (*Acris crepitans*), Western Chorus Frog (*Pseudacris triseriata*), Bird-voiced Treefrog (*Hyla avivoca*), Eastern Fence Lizard (*Sceloporus undulatus*), Gray Ratsnake (*Pantherophis spiloides*), and Eastern Ribbonsnake (*Thamnophis sauritus*).

Rivers, even large ones, change course over time and typically form an imperfect geographic barrier. Shepard and Kuhns (2017) examined the separation between Northern Slimy Salamanders (*Plethodon glutinosus*) and Western Slimy Salamanders (*Plethodon albagula*) along the Illinois-Missouri border. They found that salamanders on Fountain Bluff, an island formed of Missouri uplands cut off by post-glacial changes in the Mississippi River channel, belong to the species found in Illinois.

Spotted Dusky Salamander (*Desmognathus conanti*) and Midwestern Earthsnake (*Carphophis amoenus*) have been reported in the southern portion of Crowley's Ridge of Arkansas. Crowley's Ridge is a thin, sandy upland formed during the Pleistocene, which extends from southeastern Arkansas through southeast Missouri to the Shawnee Hills of Illinois. Populations of one or both of these species may exist in the isolated remnants of Crowley's Ridge in Missouri.

Powell *et al.* (2016) shows the distribution of the Western Milksnake (*Lampropeltis gentilis*) extending into...
western Missouri along the Kansas border. However, the sparsity of records from this region makes it difficult to accurately define the species boundary. Until additional material is available for evaluation, we have not included this species as part of the state herpetofauna.

Erroneously Reported and Non-Native Species

Anderson (1945) reported two specimens of the Dwarf Salamander (*Eurycea quadridigitata*) from Roaring River State Park in Barry County. With the nearest known naturally occurring populations of *E. quadridigitata* in southern Arkansas, more than 125 miles from the Missouri border, it is likely that this record is based on misidentified, but morphologically similar Oklahoma Salamanders (*E. tynerensis*).

Johnson and Bader (1974) included Lesser Earless Lizard (*Holbrookia maculata*) based on two specimens collected from Knob Noster State Park in Johnson County. Nickerson and Krager (1972) considered this record problematic because of the close proximity of the park to Whiteman Air Force Base and Central Missouri State University. The nearest record of this species is more than 115 miles away in central Kansas. Further searches failed to produce additional specimens. As a result, this species is not considered to be part of Missouri's herpetofauna.

Anderson (1957) listed the occurrence of the Queensnake (*Regina septemvittata*) in Missouri based on three specimens deposited in the American Museum of Natural History collection. These specimens were ascribed to G.K. Noble and reported to come from Stone County. In further investigation by Roger Conant (1960), Byron C. Marshall, who worked with Noble in the Interior Highlands during this period, reportedly had no recollection of finding this species. The nearest known populations of Queen Snake are in the Boston Mountains of Arkansas, approximately 80 miles south of this locality. The questions about the origin of the specimens and the absence of additional records from Missouri suggest that this species does not occur in the state.

One species of non-native frog and two species of lizards have been reported in Missouri. A population of Greenhouse Frogs (*Eleutherodactylus planirostris*) was established inside a commercial greenhouse in Jefferson City, Missouri (J. Briggler, pers. comm.). The population of these small terrestrial breeding frogs persisted for several years, but has apparently disappeared following renovation of the greenhouse. There are no other reports of this tropical species occurring within the state. Its apparent inability to survive extreme winter weather makes it unlikely for these frogs to exist in Missouri as a free-ranging species outside of sheltered habitats, such as greenhouses.

Hemidactylus turcicus is native to the Mediterranean basin and western Asia. This species is easily transported and a highly successful colonizer. Populations of this species have been established worldwide. In the United States, this species is currently established widely throughout the south, especially along the Gulf and East Coasts. Isolated populations are also found around numerous urban centers of the Midwest and central plains (Powell et al. 2016). Two populations appear to be established in Missouri. Bufalino (2004) reported this species from St. Louis County. A second population was discovered in Joplin, Missouri by Mr. A. Braun (Daniel et al. 2015).

Briggler et al. (2015) reported the presence of a robust population of Italian Wall Lizard (*Podarcis siculus*) in a Joplin neighborhood after being contacted by a resident in 2013. This population apparently descended from a series of lizards imported from Topeka, KS, which escaped in 2001. In many states, including Missouri, it is illegal to release non-native species. Despite prohibitions, the majority of introduced populations of this species in North America originated from released animals in the pet trade (Burke and Deichsel 2008).

Thus far, non-native amphibians and reptiles in Missouri have been confined to urban centers and do not appear to constitute a threat to our native herpetofauna. However, this is not the case everywhere and non-native species that have become invasive are considered by many biologists to be a major threat, second only to habitat loss or degradation, to native species. Responsible pet owners should always exercise care to prevent the spread of this and all non-native species into the natural environment.

County Records

Earlier versions of this publication used Johnson (2000) as an authority on herpetological county records. However, Johnson's distribution maps are nearly two decades out of date. Furthermore, a number of county records reported by Johnson could not be subsequently verified with museum voucher specimens and are not recognized as valid for the purposes of this project. Beginning with the 2012 version of the *Atlas*, we used only vouched specimens as the basis for reporting new Missouri county records (except for the aforementioned published records considered valid). Thus, all county records mapped as "open circle" county records in some previous versions of the *Atlas* will not be considered valid and will therefore not be included on the county records maps.

Distributions

Distribution is one of many characteristics used to describe a species and range maps (such as those found in Conant and Collins (1998)) are used to approximate a species' likely distribution. This atlas uses locality dot maps, with each dot representing a known locality for that species. This conservative method results in an underestimate of a species distribution but is more accurate than a range map. The purpose of the atlas project is to document as closely as possible both current and historical distributions for all native amphibians and reptiles in Missouri.

However, the printed version of the atlas only reflects the best historical approximation of each species'
distribution in the state. The most noticeable resulting incongruity is that fact that some species are shown in historical localities in which they are almost certainly no longer found. For example, the Smooth Greensnake (Opheodrys vernalis) was once found in scattered populations in the prairie regions of the state. Due to extensive habitat loss and possibly other reasons, they are extremely rare or extirpated in the state.

While natural communities have long been a staple in ecology, formal classification of natural communities has been undertaken relatively recently in Missouri (Nelson 1987, 2005). Like individual species, natural communities can be described and characterized with distinct distributions and abundances in different ecoregions (see next section). For example, glades are common in the Ozarks but rare elsewhere in the state. Steyermark (1963), Yatskievych (1999), Pfieger (1989), Hawker (1992), and Unklesby and Vineyard (1992) all describe and summarize the complex interplay among geology, natural history, ecoregions, natural divisions, and natural communities from slightly different perspectives. Taken together, these ideas form the basis of the biogeography of Missouri and they are essential in understanding why plants and animals have the distributions that we see today.

Terrestrial Ecoregions

An ecoregion classification system attempts to define and describe geographic regions that correspond to broad ecosystem patterns, topography, geology, soils, vegetation patterns, and the distributions of plants and animals. Omernik (1987) described ecoregions (Levels I, II, and III) for the conterminous United States as a hierarchical scheme with Level I corresponding to large regions and Level III representing smaller, more precisely described regions. The Environmental Protection Agency (2003) is coordinating an effort to further subdivide Level III regions into Level IV regions. Nigh and Schroeder (2002) published Level III and Level IV ecoregions for Missouri.

Some amphibian and reptile species follow defined ecoregions closely. For example, the Cave Salamander (Eurycea lucifuga) is neatly confined to the Ozark Highlands (Level III) and found throughout the ecoregion, with the exception of most of the Springfield Plateau (Level IV). Several species found in the southeastern alluvial plain are particularly characteristic and also confined to that area (e.g., Three-toed Amphiuma (Amphiuma tridactylum) and Southern Watersnake (Nerodia fasciata)).

Many species, however, seem to be abundant throughout Missouri, regardless of the region or natural community. The American Bullfrog (Lithobates catesbeianus), Snapping Turtle (Chelydra serpentina), and Western Ratsnake (Pantherophis obsoletus) among several others fall into this category. Finally, many species are more closely associated with a particular natural community or habitat than with a particular ecoregion or natural division. For example, The Flat-headed Snake (Tantilla gracilis) can be found in the Ozark Highlands, Osage Prairie, and Interior River Valleys and Hills but it is restricted to rocky glades.

In general, Level IV ecoregions are too granular to be useful in describing the distributions of Missouri amphibians and reptiles, several Ozark salamander species and many of the coastal plains species being notable exceptions. However, this level of detail is useful to understand natural community distributions on which some species are dependent. It also underscores the importance of looking at border states and across artificial political boundaries to understand distributions within Missouri.

Level I (page 8), Level II (page 9), Level III (page 10), and Level IV (page 11) ecoregion maps for Missouri and surrounding states, based on Omernik (1987) and Nigh and Schroeder (2002) are included here. The hierarchy for Levels I, II, and III is included in Table 1 (below), while the Level III and Level IV hierarchy is included in Table 2 (below). Unfortunately, the authors’ coding scheme for Level III is inconsistent, though the names do match. Both authors’ codes for Level III are included in the tables as a cross-reference. An earlier approach by Thom and Wilson (1980) divided Missouri into natural divisions and sections (page 7), roughly corresponding to Level III and Level IV ecoregions, respectively.

Table 1. List of Level I, II, and III Terrestrial Ecoregions from Omernik (1987). Those regions marked with an asterisk (*) do not occur in Missouri but are sufficiently close to be of interest to Missouri biologists. Level III codes from Nigh and Schroeder (2002) are in parentheses.

<table>
<thead>
<tr>
<th>8.</th>
<th>Eastern Temperate Forests</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3</td>
<td>Southeastern USA Plains</td>
</tr>
<tr>
<td>8.3.3</td>
<td>Interior Plateau* (71)</td>
</tr>
<tr>
<td>8.3.6</td>
<td>Mississippi Valley Loess Plains (74)</td>
</tr>
<tr>
<td>8.3.2</td>
<td>Interior River Valleys and Hills (72)</td>
</tr>
<tr>
<td>8.4</td>
<td>Ozark / Ouachita / Appalachian Forests</td>
</tr>
<tr>
<td>8.4.5</td>
<td>Ozark Highlands (39)</td>
</tr>
<tr>
<td>8.4.6</td>
<td>Boston Mountains* (38)</td>
</tr>
<tr>
<td>8.5</td>
<td>Southeast US Coastal Plain</td>
</tr>
<tr>
<td>8.5.2</td>
<td>Mississippi Alluvial Plain (73)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9.</th>
<th>Great Plains</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.2</td>
<td>Temperate Prairies</td>
</tr>
<tr>
<td>9.2.3</td>
<td>Western Corn Belt Plains (47)</td>
</tr>
<tr>
<td>9.2.4</td>
<td>Central Irregular Plains (40)</td>
</tr>
</tbody>
</table>

Table 2. List of Level III and Level IV Terrestrial Ecoregions from Nigh and Schroeder (2002). Those regions marked with an asterisk (*) do not occur in Missouri but are sufficiently close to be of interest to Missouri biologists. Those regions marked with a caret (^) are contained entirely within the state's borders.

<table>
<thead>
<tr>
<th>38</th>
<th>Boston Mountains* (8.4.6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>38a</td>
<td>Upper Boston Mountains*</td>
</tr>
<tr>
<td>38b</td>
<td>Lower Boston Mountains*</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>39</th>
<th>Ozark Highlands (8.4.5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>39a</td>
<td>Springfield Plateau</td>
</tr>
<tr>
<td>39b</td>
<td>Elk River Hills</td>
</tr>
<tr>
<td>39c</td>
<td>White River Hills</td>
</tr>
<tr>
<td>39d</td>
<td>Central Plateau</td>
</tr>
<tr>
<td>39e</td>
<td>Osage / Gasconade River Hills^</td>
</tr>
<tr>
<td>39f</td>
<td>Saint Francois Knobs / Basins^</td>
</tr>
</tbody>
</table>
Aquatic Subregions

Like terrestrial ecoregions, aquatic subregions can be classified in discrete units, based on watershed and hydrological characteristics. Subregions are composed of ecological drainage units, which are major watersheds that are consolidated based on similarity and proximity (MSDIS 2009a). Subregions and their component drainage units can be seen in Table 3 (below).

Naturally, many of the same patterns emerge in both terrestrial and aquatic geographic classifications since the two are not independent of one another. However, aquatic subregions and ecological drainage units can differ from their terrestrial counterparts since most aquatic organisms are confined to watersheds as well as specific habitats.

Since many species of amphibians and reptiles are partially or wholly dependent on aquatic habitats, distributions can sometimes be best understood and explained by examining aquatic subregions, ecological drainage units, and even individual watersheds.

The base map for major rivers and streams (page 12) shows locations of actual rivers and streams inside Missouri and just outside the state's borders where appropriate (USGS 1994; MDC 2007b). The watershed boundaries map (page 13) displays the maximum terrestrial boundary for major watersheds (NRCS 2002). Both of these maps are underlain with unique background colors to display Missouri's primary drainage systems: a) Mississippi River, b) Missouri River, c) Arkansas River, and d) White River.

Some species found in the state exhibit distributions that can be better understood by referring to these primary drainage systems. The ecological drainage units map (page 14) shows a somewhat consolidated view of the watersheds map based on those watersheds and other characteristics. It is underlain with unique background colors showing the three broad aquatic subregions in the state. Still more detailed aquatic region classifications are available but often include areas based on very small creeks and their watersheds and are therefore not included here.

Table 3. List of Aquatic Subregions and Ecological Drainage Units from MSDIS (2009a, 2009c). Each drainage unit is indicated with its primary drainage system: a) Mississippi River, b) Missouri River, c) Arkansas River, d) White River.

* Central Plains Subregion
 *
 Blackwater / Lamine (b)
 * Cuivre / Salt (a)
 * Des Moines (a)
 * Grand / Chariton (b)
 * Kansas (b)
 * Nishnabotna / Platte (b)
 * Osage / South Grand (b)

* Ozarks Subregion
 *
 Apple / Joachim (a)
 * Black / Current (d)
 * Gasconade (b)
 * Meramec (a)
 * Moreau / Loutre (b)
 * Osage (b)
 * Neosho (c)
 * Upper Saint Francis / Castor (a)
 * White (d)

* Mississippi Alluvial Subregion
 *
 Black / Cache (a)
 * Saint Francis / Little (a)
 * Saint Johns Bayou (a)
Natural Divisions and Sections

Modified from Thom and Wilson (1980)
Base map data provided by MSDIS (2009b) and MDC (2007a)

- Glaciated Plains
- Ozark Border
- Ozark Plateau
- Osage Plains
- Mississippi Lowlands
- Big Rivers

Western Glaciated Plains
- Grand River

Eastern Glaciated Plains
- Upper Mississippi
- Lincoln Hills

Missouri (Upper and Lower)
- Western Glaciated Plains
- Osage Plains

Upper Ozarks
- Upper Ozark Border

Lower Ozarks
- Lower Mississippi
- Crowley's Ridge
- Saint Francois Mtns

Mississippi Lowlands
- Mississippian Border

Springfield Plateau
Level I Terrestrial Ecoregions

Base map data provided by the National Atlas (2001)

Data provided by EPA (2003)
Level IV Terrestrial Ecoregions

Data provided by EPA (2003)
Base map data provided by the National Atlas (2001)
Rivers and Major Streams

Data provided by USGS (1994) and MDC (2007b)
Base map data provided by MSDIS (2009b)

Mississippi River Watershed
Missouri River Watershed
White River Watershed
Arkansas River Watershed
Species Locality Maps

Key:

• Museum or published record believed to be valid

* County record only for:
 -- Valid record without a specific locality
 -- Species of conservation concern, locality withheld

? Questionable record that may be valid

Siren intermedia
Western Lesser Siren

Cryptobranchus alleganiensis
Hellbender

Ambystoma annulatum
Ringed Salamander
Ambystoma maculatum
Spotted Salamander

Ambystoma opacum
Marbled Salamander

Ambystoma talpoideum
Mole Salamander

Ambystoma texanum
Small-mouthed Salamander
Ambystoma tigrinum
Eastern Tiger Salamander

Notophthalmus viridescens
Central Newt

Necturus maculosus
Mudpuppy

Amphiuma tridactylum
Three-toed Amphiuma
Eurycea longicauda
Long-tailed Salamander

Eurycea lucifuga
Cave Salamander

Eurycea spelaea
Grotto Salamander

Eurycea tynerensis
Oklahoma Salamander
Hemidactylium scutatum
Four-toed Salamander

Plethodon albagula
Western Slimy Salamander

Plethodon angusticlavius
Ozark Zigzag Salamander

Plethodon serratus
Southern Red-backed Salamander
Anaxyrus fowleri
Fowler's Toad

Anaxyrus woodhousii
Woodhouse's Toad

Acris blanchardi
Blanchard's Cricket Frog

Hyla chrysoscelis
Cope's Gray Treefrog
Pseudacris fouquettei
Cajun Chorus Frog

Pseudacris illinoensis
Illinois Chorus Frog

Pseudacris maculata
Boreal Chorus Frog

Lithobates areolatus
Northern Crawfish Frog
Lithobates blairi
Plains Leopard Frog

Lithobates catesbeianus
American Bullfrog

Lithobates clamitans
Green Frog

Lithobates palustris
Pickerel Frog
Lithobates pipiens
Northern Leopard Frog

Lithobates sphencephalus
Southern Leopard Frog

Lithobates sylvaticus
Wood Frog

Gastrophryne carolinensis
Eastern Narrow-mouthed Toad
Gastrophryne olivacea
Western Narrow-mouthed Toad

Crotaphytus collaris
Eastern Collared Lizard

Phrynosoma cornutum
Texas Horned Lizard

Sceloporus consobrinus
Prairie Lizard
Aspidoscelis sexlineata
Six-lined Racerunner

Plestiodon anthracinus
Southern Coal Skink

Plestiodon fasciatus
Common Five-lined Skink

Plestiodon laticeps
Broad-headed Skink
Plestiodon obsoletus
Great Plains Skink

Plestiodon septentrionalis
Prairie Skink

Scincella lateralis
Little Brown Skink

Ophisaurus attenuatus
Western Slender Glass Lizard
Hemidactylus turcicus
Mediterranean Gecko

Podarcis siculus
Italian Wall Lizard

Cemophora coccinea
Northern Scarletsnavke

Coluber constrictor
North American Racer
Species Locality Maps

Lampropeltis triangulum
Eastern Milksnake

Opheodrys aestivus
Northern Rough Greensnake

Opheodrys vernalis
Smooth Greensnake

Pantherophis emoryi
Great Plains Ratsnake

Atlas of Missouri Amphibians and Reptiles for 2021
Species Locality Maps

Pantherophis obsoletus
Western Ratsnake

Pantherophis ramspotti
Western Foxsnake

Pantherophis vulpinus
Eastern Foxsnake

Pituophis catenifer
Bullsnake
Sonora semiannulata
Variable Groundsnake

Tantilla gracilis
Flat-headed Snake

Carphophis vermis
Western Wormsnake

Diadophis punctatus
Ring-necked Snake
Farancia abacura
Western Mudsnake

Heterodon gloydi
Dusty Hog-nosed Snake

Heterodon nasicus
Plains Hog-nosed Snake

Heterodon platirhinos
Eastern Hog-nosed Snake
Clonophis kirtlandii
Kirtland's Snake

Haldea striatula
Rough Earthsnake

Nerodia cyclopion
Mississippi Green Watersnake

Nerodia erythrogaster
Plain-bellied Watersnake
Storeria dekayi
DeKay’s Brownsnake

Storeria occipitomaculata
Northern Red-bellied Snake

Thamnophis proximus
Orange-striped Ribbonsnake

Thamnophis radix
Plains Gartersnake
Sistrurus tergeminus
Prairie Massasauga

Chelydra serpentina
Snapping Turtle

Macrochelys temminckii
Alligator Snapping Turtle

Kinosternon flavescens
Yellow Mud Turtle
Kinosternon subrubrum
Mississippi Mud Turtle

Sternotherus odoratus
Eastern Musk Turtle

Chrysemys dorsalis
Southern Painted Turtle

Chrysemys picta
Western Painted Turtle
Deirochelys reticularia
Western Chicken Turtle

Emydoidea blandingii
Blanding's Turtle

Graptemys geographica
Northern Map Turtle

Graptemys ouachitensis
Ouachita Map Turtle
County Records Maps

Key:

- Valid vouchered county record

Siren intermedia
Western Lesser Siren

Cryptobranchus alleganiensis
Hellbender

Ambystoma annulatum
Ringed Salamander
Ambystoma maculatum
Spotted Salamander

Ambystoma opacum
Marbled Salamander

Ambystoma talpoideum
Mole Salamander

Ambystoma texanum
Small-mouthed Salamander
Ambystoma tigrinum
Eastern Tiger Salamander

Notophthalmus viridescens
Central Newt

Necturus maculosus
Mudpuppy

Amphiuma tridactylum
Three-toed Amphiuma
Eurycea longicauda
Long-tailed Salamander

Eurycea lucifuga
Cave Salamander

Eurycea spelaea
Grotto Salamander

Eurycea tynerensis
Oklahoma Salamander
Hemidactylium scutatum
Four-toed Salamander

Plethodon albagula
Western Slimy Salamander

Plethodon angusticlavius
Ozark Zigzag Salamander

Plethodon serratus
Southern Red-backed Salamander
Scaphiopus holbrookii
Eastern Spadefoot

Spea bombifrons
Plains Spadefoot

Anaxyrus americanus
American Toad

Anaxyrus cognatus
Great Plains Toad
Anaxyrus fowleri
Fowler's Toad

Anaxyrus woodhousii
Woodhouse's Toad

Acris blanchardi
Blanchard's Cricket Frog

Hyla chrysoscelis
Cope's Gray Treefrog
Pseudacris fouquettei
Cajun Chorus Frog

Pseudacris illinoensis
Illinois Chorus Frog

Pseudacris maculata
Boreal Chorus Frog

Lithobates areolatus
Northern Crawfish Frog
Lithobates blairi
Plains Leopard Frog

Lithobates catesbeianus
American Bullfrog

Lithobates clamitans
Green Frog

Lithobates palustris
Pickerel Frog
Lithobates pipiens
Northern Leopard Frog

Lithobates sphenocephalus
Southern Leopard Frog

Lithobates sylvaticus
Wood Frog

Gastrophryne carolinensis
Eastern Narrow-mouthed Toad

County Records Maps
Gastrophryne olivacea
Western Narrow-mouthed Toad

Crotaphytus collaris
Eastern Collared Lizard

Phrynosoma cornutum
Texas Horned Lizard

Sceloporus consobrinus
Prairie Lizard
Aspidoscelis sexlineata
Six-lined Racerunner

Plestiodon anthracinus
Southern Coal Skink

Plestiodon fasciatus
Common Five-lined Skink

Plestiodon laticeps
Broad-headed Skink
Plestiodon obsoletus
Great Plains Skink

Plestiodon septentrionalis
Prairie Skink

Scincella lateralis
Little Brown Skink

Ophisaurus attenuatus
Western Slender Glass Lizard
Hemidactylus turcicus
Mediterranean Gecko

Podarcis siculus
Italian Wall Lizard

Cemophora coccinea
Northern Scarletsnake

Coluber constrictor
North American Racer
Coluber flagellum
Eastern Coachwhip

Lampropeltis calligaster
Prairie Kingsnake

Lampropeltis holbrooki
Speckled Kingsnake

Lampropeltis nigra
Eastern Black Kingsnake
Lampropeltis triangulum
Eastern Milksnake

Opheodrys aestivus
Northern Rough Greensnake

Opheodrys vernalis
Smooth Greensnake

Pantherophis emoryi
Great Plains Ratsnake
Pantherophis obsoletus
Western Ratsnake

Pantherophis ramspotti
Western Foxsnake

Pantherophis vulpinus
Eastern Foxsnake

Pituophis catenifer
Bullsnake
Sonora semiannulata
Variable Groundsnake

Tantilla gracilis
Flat-headed Snake

Carphophis vermis
Western Wormsnake

Diadophis punctatus
Ring-necked Snake
Farancia abacura
Western Mudsnake

Heterodon gloydi
Dusty Hog-nosed Snake

Heterodon nasicus
Plains Hog-nosed Snake

Heterodon platirhinos
Eastern Hog-nosed Snake
Nerodia fasciata
Broad-banded Watersnake

Nerodia rhombifer
Diamond-backed Watersnake

Nerodia sipedon
Common Watersnake

Regina grahamii
Graham's Crawfish Snake
Storeria dekayi
DeKay’s Brownsnake

Storeria occipitomaculata
Northern Red-bellied Snake

Thamnophis proximus
Orange-striped Ribbonsnake

Thamnophis radix
Plains Gartersnake
Thamnophis sirtalis
Common Gartersnake

Tropidoclonion lineatum
Lined Snake

Virginia valeriae
Western Smooth Earthsnake

Agkistrodon contortrix
Copperhead
Agkistrodon piscivorus
Western Cottonmouth

Crotalus horridus
Timber Rattlesnake

Sistrurus catenatus
Eastern Massasauga

Sistrurus miliarius
Western Pygmy Rattlesnake
Sistrurus tergeminus
Prairie Massasauga

Chelydra serpentina
Snapping Turtle

Macrochelys temminckii
Alligator Snapping Turtle

Kinosternon flavescens
Yellow Mud Turtle
Kinosternon subrubrum
Mississippi Mud Turtle

Sternotherus odoratus
Eastern Musk Turtle

Chrysemys dorsalis
Southern Painted Turtle

Chrysemys picta
Western Painted Turtle
Deirochelys reticularia
Western Chicken Turtle

Emydoidea blandingii
Blanding’s Turtle

Graptemys geographica
Northern Map Turtle

Graptemys ouachitensis
Ouachita Map Turtle
Graptemys pseudogeographica
False Map Turtle

Pseudemys concinna
River Cooter

Terrapene carolina
Three-toed Box Turtle

Terrapene ornata
Ornate Box Turtle
Trachemys scripta
Red-eared Slider

Apalone mutica
Midland Smooth Softshell

Apalone spinifera
Eastern Spiny Softshell
Acknowledgements

Data for the base county maps for the locality and county distributions, the labeled county map, and the ecological drainage units and aquatic subregions were generously provided by the Missouri Spatial Data Information Service (MSDIS 2009a, 2009b, 2009c). Data for the major rivers were provided by the United States Geological Survey (USGS 1994) and supplemented with data from the Missouri Department of Conservation (MDC 2007). Data for Missouri natural divisions and sections (based on Thom and Wilson 1980)) were generously provided by the Missouri Department of Conservation (MDC 2007). Data for watershed boundaries were provided by the Natural Resources Conservation Service (NRCS 2002). Data for ecoregions were provided by the US Environmental Protection Agency (EPA 2003). Base map data for surrounding states were provided by the National Atlas of the United States (National Atlas 2001).

All technology-related aspects of the Missouri Herpetological Atlas Project are supported by a suite of open source software that is both gratis (free as in beer) and libre (free as in speech). Kubuntu Linux is used as the operating system to host and execute all processes related to the project. Atlas, checklist, and GIS data are stored in a PostgreSQL database, which has been spatially enabled using PostGIS. Project documentation and database scripts are written with PHP and displayed using an Apache web server. QGIS is used to produce all base maps, distribution, county records, and other maps. The programming language Python is used to create GIS plug-ins for map exports. The open source Python library, ReportLab, is used to create the final atlas publication in portable document format (PDF), which was recently declared an ISO standard.

Most importantly, a project of this magnitude cannot be accomplished without the contributions of many individuals. We would like to thank the following for specimen information, feedback, and technical assistance on the project:

Literature Cited

Conant, R., and C.J. Goin. 1948. A new subspecies of the
Natrix septemvittata
Conant, R. 1960. The Queen Snake,
Burt, C.E. and W.L. Hoyle. 1935. Additional records of the
Burt, C.E. 1935. Further records of the ecology and
Burt, C.E. 1933. A collection of amphibians and reptiles
Burt, C.E. 1932. Records of amphibians from the eastern
Bufalino, A.P. 2004. Geographic Distribution:
Boyer, D.A., and A.A. Heinze. 1934. An annotated list of
Briggler, J.T., R.L. Rimer and G. Deichsel. 2015. First
Briggler, J.T. and T.R. Johnson. 2021. The Amphibians and
Brandley, M.C., A. Schmitz and T.W. Reeder. 2005. Speciation,
Bodie, J.R. 1998. Contemporary hydrology of a large-river
Blanchard, F.N. 1924. A collection of amphibians and
Bartholomew (eds.)

Easterla, D.A. and M.D. Meadows. 1993. The northern prairie skink rediscovered in Missouri, the last recorded occurrence of the smooth green snake for Missouri, plus a Missouri range extension for the northern spring peeper. *Bluebird* 60(3): 105-109.

Utiger, U., N. Helfenberger, B. Schatti, C. Schmidt, M. Rufand, and V. Ziswiler. 2002. Molecular systematics...

Appendix A: Sources

American Museum of Natural History
Arkansas State University
Austin Peay State University
Bobby Witcher Memorial Collection, Avila College (KU)
Carnegie Museum of Natural History
Chicago Academy of Sciences
Cornell University Museum of Vertebrates
Culver-Stockton College
Dallas Museum of Natural History
Field Museum of Natural History
H. Carl Gerhardt Audio Recording Collection (Cornell)
Historical Literature Sources
Illinois Natural History Survey
Milwaukee Public Museum
Missouri Department of Conservation
Missouri State University
Museum of Comparative Zoology, Harvard University
Museum of Natural Science, Louisiana State University
Museum of Southwest Biology (New Mexico)
National Museum of Natural History
National History Museum of Los Angeles County
Paul Anderson (The Reptiles of Missouri)
Pittsburg State University
Saint Louis Academy of Sciences
Southeast Missouri State University
Southern Illinois University--Carbondale
Southern Illinois University--Edwardsville
Sternberg Museum of Natural History, Fort Hays State University
Texas Natural History Collection
University of Arkansas--Fayetteville
University of California--Berkeley Museum of Vertebrate Zoology
University of Central Missouri
University of Florida at Gainesville
University of Georgia, Museum of Natural History
University of Illinois Natural History Museum
University of Kansas, Museum of Natural History
University of Michigan, Museum of Zoology
University of Missouri--Columbia Dean E. Metter Memorial Herpetology Collection
William Jewell College

* Sources marked with an asterisk (*) are included from published accounts only and are presumed to represent only part of the collection's Missouri records. All Missouri material from these sources has not been included in the database or the printed atlas.